
Wigner quantum oscillators. osp(3/2) oscillators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 7387

(http://iopscience.iop.org/0305-4470/27/22/014)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A Math. Gen. 27 (1994) 7387-7401. Printed in the UK 

Wigner quantum oscillators. osp (3/2) oscillators 

T D Palevts and N I Stoilova$ 
t Arnold Sommerfeld Institute for Mathematical Physics, Technical University of Clausthal, 
D-38678 Clausthal-Zellerfeld, Germany 
t Institute for Nuclear Research and Nuclear Energy, 1784 Sofia Bulgaria 

Received 26 May 1994 

Abstract. The properties of the three-dimensional non-canonical oscillators usp(3/2) 
(introduced in J.  Phys. A: Mruh. Gen. 21 (1994) 977) are studied further. The angular 
momentm M of the oscillators can take at most three values M = p - I .  p. p + 1, which are 
either all integers or all half-integers. The coordinates anticommute with each other. Depending 
on the state space the energy spectrum can coincide or can be essentially different from those 
of the canonical oscillator. The ground state is in general degenerate. 

I. Inh-oduction 

In this paper we continue the study of the three-dimensional non-relativistic quantum 
o s p ( 3 / 2 )  oscillators, introduced in [ I ] .  The main algebraic feature of each such oscillator is 
that its position and momentum operators generate a representation of the orthosymplectic 
Lie superalgebra o s p ( 3 / 2 ) .  The state space of each oscillator is an infinite-dimensional 
irreducible module of the Lie superalgebra (LS) osp(3/2). This result was only announced 
in [ l ] .  Here we prove it. Moreover in [ I ]  we considered one particular oscillator, namely 
one with an angular momentum i, stating only the energy and the angular momentum 
spectrum of the other possible oscillators. Here we study the physical properties of all 
o s p ( 3 / 2 )  oscillators in detail, iniroducing an onhonormed basis, consisting of common 
eigenvectors of the Hamiltonian N, the square of the angular momentum M 2  and its third 
projection h43. Within each state space we compute the matrix elements of essentially all 
physical observables. 

The motivation for introducing and studying such more general, non-canonical 
oscillators was outlined in [I]. We recall the main points. The idea belongs to Wigner [ Z ] ,  
who observed that the Hamiltonian equations can be identical to the Heisenberg equations 
for position and momentum operators, which do not necessarily satisfy the canonical 
commutation relations (CCRs). Wigner has demonstrated this using as an example a one- 
dimensional harmonic oscillator, studied subsequently by several authors [ 3 ] .  

P 
m 

The question about the compatibility of the Hamiltonian equations 

(1) T = -  p = - m w r  2 

with the Heisenberg equations (here and throughout [ x ,  y ]  = x y  - y x ,  [ x ,  y ]  = x y  + y x )  
I 

P = -4P, NI h 
I 

1: =--[I'. h H J  

5 Permanent address: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigndsko Chausse 72, 1784 
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of a three-dimensional harmonic oscillator, namely of a system with a Hamiltonian 

T D Palev and N I Stoilova 

was investigated in [4] and [I] .  The present paper is also in the same frame. The problem 
is to determine and study at least some non-canonical Wigner quantum oscillators. To be 
more precise with the terminology we give the following definition. 

De$nition I .  A aiple (T. p ,  W) is said to be a Wigner quantum oscillator if it fulfills the 
following three conditions (we refer to them as to quantum conditions): 

(i) The state space of the oscillator W is a Hilbert space. The physical observables are 
Hermitian (linear) operators in W .  

(ii) The Hamiltonian equations ( I )  and the Heisenberg equations (2) are identical (as 
operator equations) in W .  

(iii) The projections of the angular momentum of the oscillator M = ( M I ,  M2. M3) 
are in the enveloping algebra of the position operators r = ( r ] ,  r2, r3) and the momentum 
operators p = (PI ,  p z .  p3). Each Mk is linear in (rI, r2.13) and linear in (p l .  pz, p 3 ) .  so 
that M ,  r and p transform as vectors: 

We underline that in our approach the operators r = (rl, rz ,  r3) and p = (PI, p z ,  p3) are 
postulated to be the position and the momentum operators of the oscillator, independently 
of the fact that they do not satisfy the CCRs. 

The mathematical problem that arises is to find the unknown operators T = (II, r2 ,  r 3 )  
and p = ( P I .  p2, p , )  so that the quantum conditions (i)-(iii) hold. To this end it is 
convenient to pass to new unknown operators 

* i *  For the sake of convenience we refer to the operators a ,  , az , a, as creation and annihilation 
operators (CAOS). These operators should not be confused with Bose operators. They are 
unknown operators for which we are searching. Only in one particular representation, 
corresponding to the canonical case, the operators (5) are Bose CAOs. In terms of a: the 
Hamiltonian (3) reads 

Condition (ii) yields (k = I ,  2,3) 

and is equivalent to the requirement that the Hamiltonian (in units hw), namely N = 
(&w)-I H, is a number operator 

[N, a:] = &a:. 
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The equations (7) are a unique consequence from the Hamiltonian equations (1) and the 
Heisenberg equations (2 )  independently of the properties of the unknown CAOs a:. They 
are equal time relations. the time dependence being 

a:(O) a, * k = 1 , 2 , 3 .  (8) 
+ a, ( t )  = e  a, 

Hence equations (7) hold, if they are fulfilled at, say, r = 0. 
Let F be the free unital ( = to unity) associative algebra with generators a:, a:, a: 

and relations (7). Any representation of F is a candidate for a Wigner quantum oscillator. 
Out of all such representations one has to select those for which also conditions (i)<iii) 
hold. The set of solutions is not empty: it contains at least the canonical oscillator solution. 
The general solution of the problem is, however, unknown to us. In [ 11 we have listed three 
classes of solutions of CAOS fulfilling the compatibility equations (7). The third class of 
operators a:, a;? a: are the creation and annihilation operators of the osp(3/2) oscillator. 
They are defined with the following relations (E ,  5 = & or + 1 .  i. j ,  k = 1,2,3): 

[{a+, aJ:), a;] = &a: - &a; + $j&a; 

[{aF,afl,a;l = O  

lai + ,aJ - ) - - -(at,a,-) 

{a;. a;) = 0 i # j (9) 

Iag.afJ={a?E,~J=Ia3E,a3~ e 
i # j  

In the next section we investigate the algebraic structure of the operators (9) and establish 
their relation to the osp(3/2) algebra. To this end we first recall the definition of the Lie 
superalgebra osp(3/2). 

2. Lie superalgebraic properties of the creation and the annihilation operators (9) 

In a matrix form the orthosymplectic LS osp(3 /2)  can be defined as the set of all 5 x 5 
matrices of the form [SI 

a 0 b l x u  

- c - b  0 I z w 
0 - a c t y  v 

- -  _ - -  
U U w l d  e 

-y  - X  -Z I f -d 

where the non-zero entries are arbitrary complex numbers. The even subalgebra So(3) f3 
sp(2) consists of all matrices (lo), for which x = y = z = U = U = w = 0, whereas 
the odd subspace is obtained taking a = b = c = d = e = f = 0. The product (= the 
supercommutator) I[ , ]I of any two homogeneous elements is (i) a matrix anticommutator 
between odd matrices and (ii) a matrix commutator in all other cases. 

The algebra osp(3/2) is generated from its subspace G, consisting of all matrices (lo), 
for which a = d = e = f = x = y = U = U = 0 [6]. Let eij be a 5 x 5 matrix with 1 on 
the cross of the ith row and the j th  column and zero elsewhere. The matrices 

(11) 

(12) 

c; = &(e, - e311 

c; = &(e34 - e531 

CO' = &(e32 - el3) 

c: = f i ( e , ,  t e431 
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constitute a basis i n  G with even generators (1 1) and odd generators (12). The other eight 
osp(3/2) generators are the supercommutators of ( 1  I ) ,  (12) 

T D Palev and N I Stoilova 

u c ~ , c ~ n = ~ ~ ~ ; - ( - i ) p y c ~ c ~  P , q ~ z 2 - ( o , ~ ) .  (13) 
The subspace G is a Lie-super triple system in the terminology of Okubo [7]. It is 

(14) 

closed under double supercommutators 

l u x .  yll, z] = 2(ylz)x - 2(-1)deS'x'd"'y'(xlz)y E G V x ,  y.  z E G 
where the bilinear form (xly) is defined as [7] 

(c;lc;) = +-6pq6<,-" e ,  rl = +. p ,  q E & = (0, 1).  (15) 
In terms of the basis ( l l ) ,  (12) in G, equation (14) reads 

fuc;,c;n, cfn = 2~'6~,6 , , - , c~  - ~E'(-I)~'~,,S,.-,C; 5 ,  q , t  = i., p , q ,  r E & ,  
(16) 

Equation (16) was derived in another form in [6]. There it was shown that B* = c* I 
are para-Bose operators [SI, whereas the operators F* = CO' are para-Fermi operators [SI. 
Observe that the para-Fermi operators appear as even (i.e. bosonic) variables, whereas the 
para-bosons are odd (i.e. fermionic) operators. Moreover the para-bosons do not commute 
with the para-fermions. Okubo [7] and Macfarlane [9] also arrived recently at the same 
conclusion. It may be of interest to observe that the equations (16) are satisfied with ordinary 
bosons and fermions, provided that the bosons anticommute with the fermions [6]. In this 
way one obtains the simplest infinite-dimensional representation of osp(3/2). 

Equations (16) were derived using the five-dimensional representation (10) of 
osp(3/2). However, since during the derivation we used only supercommutation relations, 
equations (16) hold within every representation. Therefore from now on (without changing 
the notation) we consider cp ( p  = 0, 1; 5 = +) as abstract, representation-independent 
generators. It is essential to point out that the supercommutation relations between all 
generators c;, UcL, c,"n = tic: - (-l)p9c,"c; ( 5 ,  q = &; p ,  q = 0 , l )  can be computed 
using only equations (16). Therefore, from the very definition of an universal enveloping 
algebra, we draw our first conclusion. 

Proposition I .  The free associative unital algebra Fc of the para-operators c! ( p  = 0. 1; 
( = i.) and the relations (16) is the universal enveloping algebra U[osp(3/2)] of the Lie 
superalgebra osp(3/2). The ZZq grading on U[osp(3/2)] is induced from the requirement 
that CO' are even generators, whereas cf are odd generators. 

e 

Define the following six elements from Fc: 

It is straightforward to check that the operators (17) satisfy the relations (9). Let 
F3(3) be the associative subalgebra of Fc, generated by the odd elements a:, 4, a;, 
F3(3) c F, = U[osp(3/2)]. Using only the relations (9). one derives 

ci = 5 [ & { a ; , 4 ]  + i(a;, a;] ]  = ;[-&(a:, a;) -i(a:, 411 c;=&ai  E = + .  

(18) 
Hence the operators a:, a;, a: generate the algebra Fc 

F3(3) = F, = U[0~p(3/2)]. (19) 
Thus, we have proved the result, announced in [I] .  namely the following: 
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Proposition 2. The free associative unital algebra F3(3) of the CAOs a:, a:, a: and 
the relations ( 9 )  is the universal enveloping algebra U[osp(3/2)1 of the Lie superalgebra 
osp(3/2).  The Z2 grading on U[osp(3/2)] is induced from the requirement that the creation 
and the annihilation operators are odd elements. 

U[osp(3/2)] can certainly be viewed as a Lie superalgebra with a supercommutator 
defined as in every associative superalgebra, namely [ x ,  yn = x y  - ( - l ) d e g ( x ) d e g @ ) y x .  The 
linear envelope of ci,  IC;, c:], f ,  q = *, p.  q = 0 , l  is then a Lie subalgebra of the 
LS U[osp(3/2)]  isomorphic to osp(3/2). From (17) and (18) one concludes that (in the 
category of the Lie superalgebras) the CAOS a;, a:, a: generate the subalgebra osp(3/2) 
of the LS U[osp(3/2)] .  More precisely 

(20) lin. env.((a, 1 0  ,a i ] ,u# ,  q ,  E = f, i ,  j ,  k = 1 , 2 , 3 )  = osp(3/2) .  

3. Satisfying the quantum conditions 

In view of the results of section 2 we already know that any state space W of the CAOs (9) 
is an osp(3/2) module (=representation space of the Ls osp(3/2)). The problem is to select 
those modules, for which the quantum conditions (i)-(iii) hold. 

3.1. Condition (ii) 

Let W be any osp(3/2)) module, i.e. a representation space where the osp(3/2) creation 
and annihilation operators (9) are defined as linear operators. From equation (8) one obtains 

It is straightforward to check that the Hamiltonian equations (1) and the Heisenberg 
equations (2) hold and are identical as operator equations. Hence condition (ii) puts no 
restriction on the osp(3/2) modules, it holds within each such module. Already now we 
can say that if the operators (21) fulfilling all quantum conditions exist, then they possess 
quite unusual properties. In particular from (9) and (21) one derives the result that the 
different coordinates (the different momenta) of the oscillator anticommute: 

[ri ,r j )  = (p i , p j )  = O  V i  # j = 1.2,3.  (22) 

3.2. Condition (iiiJ 

Consider the operators (21), defined as linear operators in an arbitrary osp(3/2) 
representation space W. Then the projections M I ,  Mz and M3 of the angular momentum 
can be defined as 
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In order to check that equations (4) hold it is better to express the angular momentum 
components in terms of the CAOS (9), namely 

or in terms of the Lie-super triple generators c$ ( p  = 0.1; 6 = rt) 

MI = -4(CZ + c;) M* = 4(c$ - CO) M3 = $[c$,  J] . (25) 

The angular momentum projections MI, Mz, M3 are the generators of the SO(3) part of 
the even subalgebra of osp(3/2), sitting in the left upper corner of the matrix realization (IO). 
Equations (25) give the usual realization O f  so(3) = d(Z) in terms of para-Fermi (and hence 
also in terms of Fermi) operators. 

3.3. Condition (i) 

So far we have satisfied the quantum conditions (ii) and (iii). These conditions put no 
restriction on the representation space; they hold within each osp(3/2) module. Passing to 
condition (i), we have the first restriction. 

Proposirion 3. 
reducible. 

If the osp(3/2) module W, satisfying (i), exists then it is completely 

The proof i s  standard. Indeed, assume that E c W is a subspace of the Hilbert space 
W ,  which is invariant with respect to the Hermitian operators a E @ I ,  rz ,  rp, p t ,  p ~ ,  p3). 
Denote by F its orthogonal compliment, W = E 8 F. Let el,  . . . , e., . . . be an orthonormed 
basis in E and f , ,  . . . , f m ,  . . . be an orthonormed basis in F .  If 

then, since (ne,, f . )  = (e,,,, af"), one immediately derives that y,. = 0 for all values of r 
and n. Hence F is also an invariant subspace. Thus, the orthogonal compliment to each 
invariant subspace is also an invariant subspace and therefore W is completely reducible. 
In view of this result the problem reduces to the determination of all irreducible osp(3/2) 
modules satisfying (i). 

The position and the momentum operators are Hermitian operators (hence the 
Hamiltonian H, the square of the angular momentum MZ and its projections MI, M2, 
M3 are also Hermitian operators) if and only if 

(a;)+ =U: k = 1,2.3 or equivalently if (c;)+ = c,' p = 0, I (26) 

where (a)' is the Hermitian conjugate to the operator a, 
As in the canonical case, one shows that the energy of any such oscillator should be non- 

negative. Indeed, if $ is a normed eigenvector of the Hamiltonian, H$ = E$,  ($, @) = 1, 
then, since pi and ri are Hermitian, from (3) one has 



Wigner quantum oscillators. osp(30) oscillators 7393 

If $0 is a state corresponding to the ground energy EO then 

a;$bo=O k = 1 . 2 . 3  (27) 

since otherwise 
The irreducible representations (irreps). for which equations (26) and (27) hold (we 

refer to them as to oscillator representations) have been classified (among several others) 
by Van der Jeugt [lo]. They are star irreps [ l l ]  with a highest weight. Recently all such 
irreps have been explicitly constructed 1121; they are infinite-dimensional. Thus, condition 
(i) and hence also all conditions ( ixi i i )  are satisfied with the oscillator representations of 
the LS osp(3/2), which we now proceed to describe. 

The oscillator representations are labelled with the set of all possible pairs ( p ,  q) ,  where 
p is an arbitrary non-negative half-integer, p = 0, $, 1 ,  :, . . . and q is any negative real 
number, such that p + 2q < 0. The osp(3/2) module corresponding to such a pair is 
denoted as W ( p , q ) .  Each such module is a direct sum of no more than eight irreducible 
infinite-dimensional modules V ( p ,  q;  M .  J) of the even subalgebra so(3) fE sp(2) .  M is 
the angular momentum of the oscillator in a state $ from V ( p ,  q ;  M ,  J )  

M2@ = [(MI)’ + (Md’  + (Md21$ = M(M + I)@ (28) 

and J is the analogue of M for the subalgebra sp(2), sitting in the right-hand lower corner 
of the matrix representations (10). More precisely, let 

J” E 51 i iJz = T+(C:)’ 

would correspond to a state with an energy EO - Ro. 

V @ E V(p,q; M. J )  

33 = - i [ c : .  c ; ) .  (29) 

Then Jf and J -  are the positive and negative root vectors of sp(2) = sl(2); 53 is the 
Cartan generator 

133. J*] = f J *  [I*,  J - ]  = 25,. (30) 

Equations (29) give the usual realization of sl(2) in terms of para-Bose (and hence also 
in terms of Bose) operators. The label J is the ‘spin’ of the reducible sp(2) module 
V ( P ,  q ;  M, J )  

J2$ = [(JI)’ + (Jd’ + (J3)’1@ = J ( J  + I ) @  V @ E V ( p ,  q ;  M, J ) .  (31) 

Let 

1: f o r x . = o  for x 2 0. 
e(x) = 

Then the decomposition of the irreducible osp(3/2) module W ( p ,  q)  into a direct sum of 
irreducible so@) fE sp(2) modules V(p, q;  M, J )  reads (121 

w(p,q) = v ( p . q ; ~ , q ) f ~ e ( p - i ) v ( p , q ; p -  i . q - ~ ) ~ e ( ~ - i ) v ( p , q ; p -  i , q - 1 )  

@ @ ( P - ; ) v ( P , ~ ; P , ~  - ; ) ~ ( J J + ~ ~ ) [ B ( P  - f ) v ( p , q ; p , q - i )  

fEv(p, 4;  p .  4 - ;) fE V ( p .  4;  P + 1. q - f )  fE V ( p ,  4; p + 1 ,  q - 1)J.  (32) 

The multipliers p + 2q, B(p - 4) and O(p - 1) are to indicate that at certain values of p 
and q some of the terms in the right-hand side of (32) are not present. For instance, at 
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p+2q = 0 the last four terms in (32) disappear. Therecan be even less terms if, in addition, 
p = 0 or p = i. Observe that the sp(2) 'spin' J of each V ( p .  q;  M ,  J )  in (32) takes only 
negative values. It corresponds to unitarizable infinite-dimensional representations of the 
non-compact real form su( l .  1) of sp(2). 

T D Palev and N I Stoilova 

The basis (Z+ = all non-negative integers) 

I p , q ; M , J ; m , j )  m = - M , - M + 1 ,  .... M - l , M ,  j = J - n .  ~ E Z +  (33) 

in V ( p ,  q ;  M ,  J )  consists of eigenvectors of the Cartan subalgebra, which is a linear span 
of M3 and Js. The transformation of the basis under the action of all osp(3/2) generators 
is completely defined from its transformation under the action of the Lie-super triple system 
generators c* and c:. The expressions for the even generators, namely the para-Fermi 
generators co , are simple e 
c z l p , q ; ~ ,  ~ ; m ,  j ) = - ~ ( M ~ m ) ( M * m + + ) l t i p , q ; ~ ,  ~ ; m * t ,  j ) .  (34) 

The transformations under the action of the odd generators c:, i.e. the para-Bose 
operators, are more involved. They follow and are, in fact, simpler than the expressions 
derived in [12]. 

For p 2 0 and p + 2q < 0 
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For p > 0 and p + 2q ,< 0 



1396 

For p > 0 and p + 2 q  < 0 

T D Paiev and N I Stoilova 

2 ( p  - 2q + 1 ) ( w  - j * 4 ) ( p  + m + l ) ( p  - m + I )  ' 
(24 - I)(P + I)(Q + I )  

x l p , q ;  p +  1,q - 1 ; m , i f $  

WJ - 1) 

x h q ;  P - 1,q - 1 ; m , j  f f). 

~ ( p  + 2 q ~ w ' -  j * 40 + m ) ( p  - m )  

(4.2) 

The above equations (34)-(42) are not easy to derive. It is quite difficult even to verify 
that they give a representation of the Liesuper ttiple relations (16). In doing so and, more 

I 
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generally, applying equations (35H42)  one should have in mind that whenever a &function 
in front of a certain term on the right-hand side vanishes, then the corresponding term should 
be cancelled out independently of the fact that some other multipliers in the same term could 
be undefined (at p = 0 one sometimes has factors %). 

The transformation relations of the basis under the action of some even generators, 
which follow from (33H42).  read: 

so(3) generators M* = f iMz. M3: 

M * l p , q ; M , J ; m , j ) = I ( M T m ) ( M f m + l ) l ~ l p , q ; M , J ; m ~ I ,  j )  (43) 

M ~ P ,  q ;  M ,  J ;  m ,  j )  = mlp, q ;  M, J ;  m,  j )  

M'IP, q ;  M, J ;  m ,  j )  = M(M + I)lp, q ;  M, J ;  m, j )  . 
(44) 

(45) 
sp(2) generators: 

J * l p , q ; M , J ; m , j ) = I ( J ~ j + l ) ( J ; c j ) l l l p , q ; M ,  J ; m , j f . l )  (46) 

SIP, q ;  M, J ;  m,  j )  = j l p ,  q ;  M ,  J ;  m,  j )  (47) 

J*lp,  q: M, J ;  m ,  j )  = J ( J  + l ) l p , q ;  M ,  J ;  m,  j )  . (48) 

Postulate that the basis (33) within each 4 3 )  @ sp(2) module V ( p ,  q ;  M ,  J )  is 
orthonormed and that the different such modules are orthogonal to each other. With respect 
to this metric the hermiticity conditions (26) hold. Consequently (TI, rz ,  r3). (PI. pz .  p3), 
M 2 ,  (MI, Mz, M3) and H are also Hermitian operators. Thus the condition (i) and hence all 
quantum conditions (i)-(iii) are satisfied within any oscillator module W ( p ,  q), considered 
as a state space of a non-canonical oscillator. Hence any triple (T ,  p ,  W ( p ,  4 ) )  is a Wigner 
quantum oscillator. 

4. Energy and angular momentum spectrum of the oscillators. Multiplicities 

The Hamiltonian ( 3 )  of the osp(3/2)  oscillator is proportional to J3 (see (29)) 

H = '"{cr. c y )  = -uIwJ3 E s p ( 2 ) .  (49) 

The operators H, M Z  and M3 commute with each other. According to (44),  (45), (47) 

2 

and (49) the basis (33) is diagonal with respect to these operators. In particular 

H I P ,  q ;  M. J ;  m,  j )  = -Zojlp, q ;  M, J ;  m,  A .  (50) 

Each state space W ( p ,  q )  contains a subspace V ( p ,  q ;  M, J )  with J = q and at 
least one subspace with J = q - f. Taking into account that within V ( p , q ;  M, J ) ,  
j = J ,  J - 1 ,  J -2. . . . , f" (SO) one obtains the speclrum E. of H in the subspaces with 
J = q m d J = q - L .  2' 

In V ( P ,  4;  p ,  q )  E n = h w ( 2 n - 2 q )  n = 0 , 1 , 2 , 3  ,... (51) 

In V ( p , q ; M , q  - i) E. =ftw[(2n+ 1) -2ql n =0, 1 , 2 , 3 , .  . . . (52) 
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Combining (51) and (52) one obtains 

T D Palev and N I Stoilova 

E , = h o ( n - Z q )  n = 0 , 1 , 2 , 3  ,.... (53) 

The energies of the states in the other subspaces V ( p ,  q ;  M. J )  do not change the 
spechum (53); they change only the multiplicities of the energy levels, Therefore 
equation (53) gives the energy levels of the oscillator in a state space W ( p ,  9). 

From the decomposition (32) and equation (28) one concludes that the angular 
momentum of an osp(3/2) oscillator in a state space W ( p , q )  can take at most three 
different values, namely 

M = p - 1, p , p  + 1. 

The states from a subspace V ( p ,  q ;  M, J )  carry an angular momentum M .  Each such space 
is infinite-dimensional. Hence the multiplicity of each allowed value M of the angular 
momentum is also infinite-dimensional. 

In order to analyse the multiplicities of the stationary states, we first observe that each 
irreducible so(3)$sp(2) module V ( p ,  q:  M. J )  is a tensor product of an irreducible 2M+ 1 
dimensional so(3) module [MI  with an irreducible infinite-dimensional sp (2 )  module [J] 

V ( p ,  4 ;  M, J )  = [MI 9 [JI , (54) 

An operator U from so(3) acts in [MI 8 [ J ]  as Q 9 id, whereas an operator b from sp(2)  
acts as i d 9  b (id=identity operator). Each basis vector Ip ,  q ;  M ,  J ;  m,  j )  E V ( p ,  q ;  M,  J )  
can be represented as 

I p , q ; M , J ; m , j )  = I M , m ) @ l J , j ) .  (55) 

Then 

M’IM, m) = M ( M  + ~ ) I M ,  m )  

J’IJ, j )  = J ( J  + l)lJ, j )  

M ~ I M ,  m )  = mlM, m )  

-hIJ, j )  = j l J ,  j )  . 
(56) 
(57) 

From (54) it is evident that the linear envelope of all 1p.q: M, .I; m, j )  states from 
V ( p ,  q ;  M. J )  with a fixed j ,  namely with a fixed energy, is an irreducible (2M + 1)- 
dimensional so@) module [MI. This observation together with the decomposition (32) 
leads to the conclusion that the eigenspace V ( E , )  of the Hamiltonian H in W ( p ,  q )  is 
generally reducible so(3) module. 

Let 

for x = 0,1,2, .  . . 
d x )  = 

0 otherwise, 

Then for the eigenspace V(E, )  of the Hamiltonian H in W ( p .  q)  we obtain 

V ( E J  = e ( p  - ue(n - I)[P - 11 e ( 1  - e ( p  + 2 4 ~ n  - i)ip + 11 
CB (e@ - f ) r p ( + )  + P(?) + 11 - e ( p  + z q ) ) e ( p  - +)p1($ - 1) 

+ 11 - e ( p  + ~ ~ ) I P ( ? ) ) [ P I .  (59) 

From equation (59) one concludes that an oscillator with a state space W ( p ,  4 )  has 
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(a) Q(p - l)B(n - I)(Zp - 1) states with an angular momentum M = p - 1 and energy E., 
(b) 

(e(p - f)rp(F) + rp(y + 11 - B ( P  + 2q))s(p - f ~ ;  - 1) 

+ ( 1  - e(p  + 2q) trp(q)1 (2~  + 1) 

states with an angular momentum M = p and energy E,,, 
(c) 1 1  - S(p + 2q))O(n - 1)(2p + 3) states with an angular momentum M = p + 1 and 
energy E,. 

Summing up the expressions in (a), (b) and (c), one obtains the number of the (linearly 
independent) states with energy E., i.e. dim V(E,). 

Let us consider the cases corresponding to different values of p. 

4.1. Oscillators with p = 0 

Since q c 0, then also p + 2q < 0 and according to (59) 

V(E0) = [O] !'(E,) = 111 V(E,) = [O] @ [ I ]  n > 1 .  (60) 

In particular, the ground state (n = 0) is non-degenerate and carries an angular 
momentum zero. Depending on the value of q ,  the energy of the ground state EO = -2hoq 
can be arbitrarily close to zero, but never zero. The first excited states (n  = 1) have M = 1 .  
In all other cases (n 1 )  the eigenspace of the Hamiltonian is reducible with respect to 
so(3). There is one state with angular momentum zero and three spaces with M = 1. 

4.2. An oscillator with p = f and p t 2q = 0 

This case corresponds to the oscillator considered in [l] .  The angular momentum of each 
state is M = 7, V(E,,) = 141 for any n; there are two states corresponding to every energy 
level. The state space W ( i ,  -a) is an infinite direct sum of two-dimensional representations 
of so(3). In this case the expressions (35H42) are greatly simplified; c,' are usual Fermi 
operators, whereas c: are Bose operators. Moreover the bosons anticommute with the 
fermions. The representation of osp(3/2) is one of the metaplectic representations of 
the superalgebra [lo]. The energy spectrum of the oscillator is the same as for an one- 
dimensional canonical harmonic oscillator 

I 

E , = h o ( n + i )  n = 0 , 1 , 2  , . . . .  (61) 

4.3. Oscillators with p = f and p + 2q c 0 

The subspace corresponding to the ground energy is two-dimensional and carries an angular 
momentum f. The angular momentum of all other states is either or $. More precisely 
one has 



7400 

4.4. Oscillators with p 

The angular momentum of the ground subspace is M = p .  There are 2p + I ground states; 
all other states have an angular momentum p or p - 1: 

T D Palev and N I Stoilova 

f and p t 2q = 0 

V(Eo) = [PI V ( E d  = [ P I @  [ p  - 11. n > 1. (63) 

4.5. Oscillators with p > +and p t 2q < 0 

The structure of the ground subspace is the same as in the previous case. The angular 
momentum of any other eigenspace of the Hamiltonian is a reducible so(3) module with 
angular momentum M = p - 1, p .  p + 1. Its so(3) content reads 

VWO) = [PI 

V ( E A  = [P - 11 @[PI @ [PI @ [P+ 11 

V W I )  = [P - 11 @[PI @ [P + 11 

n > 1 .  
(64) 

5. Discussion 

From the above considerations it is clear that the osp(3/2)  oscillators differ essentially from 
the canonical three-dimensional oscillator. We underline some of the main points in this 
respect. 

The coordinates of any osp(3/2) oscillator anticommute with each other (see 
equation (22)). Therefore one cannot have a coordinate (or x )  representation for the 
wavefunction. The geometry of the oscillator is non-commutative. For the same reason there 
exists no momentum representation. Here we have considered the case with H ,  and 
M3 being simultaneously diagonal, namely an energy-angular momentum representation. 

The canonical oscillator can be in  a state with any integer value of the angular 
momentum M, but never in a state with half-integer values of M. An osp(3/2)  oscillator 
allows at most three values of the angular momentum, M = p - 1, p ,  p + 1, but they 
can be either integers or half-integers. In particular, if p = $ then the angular momentum 
takes only one value M = i; if p = 0 then M = 0, 1; in all other cases M can have three 
different values, as indicated above. 

The energy spectrum of any osp(3/2) oscillator is equidistant. In four cases, namely 
in the state spaces W ( p ,  -a) with p = 0, i, 1, $, the spectrum is the same as that of the 
canonical three-dimensional oscillator: 

In all other cases the spectrum is different. It may even be very different for large 
values of p .  Indeed, the conditions p + 2q < 0. q < 0 put restrictions from below for the 
ground energy, namely EO 2 fiwp. Even for small values of p ,  but large values of q ,  the 
ground energy EO may be much above the canonical ground energy ihw .  

Another essential new feature we would like to point out is the degeneracy of the ground 
states. As one can see from equation (60), the eigenspace V ( E 0 )  of the Hamiltonian is non- 
degenerate only in the state spaces W ( 0 , q ) .  i.e. those with p = 0. In all cases the states from 
V ( E 0 )  carry one and the same angular momentum, namely M = p if !'(Eo) c W ( p ,  4); 
the ground subspace transforms as an irreducible so(3) module V(E0) = [ p ] .  In the state 
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spaces with p > 1 the eigenspaces V ( E . ) ,  n > 0. of H carry different angular momentum, 
they are reducible with respect to so(3). 

As a last remark we mention that all our considerations are in the Heisenberg picture; the 
operators are generally time-dependent. The only time-independent operators (from those we 
have considered) are the Hamiltonian H, the square of the angular momentum operator MZ 
and its projections (MI, M2. Ms), namely the operators generating the stability subalgebra 
so@) @ gl(1). The root vectors J" of sp(2)  and all odd generators (see equations (8) 
or (21)) depend on time. 
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